A new multiscale algorithm and its application to coarse-grained peptide models for self-assembly.
نویسندگان
چکیده
Peptide self-assembly plays a role in a number of diseases, in pharmaceutical degradation, and in emerging biomaterials. Here, we aim to develop an accurate molecular-scale picture of this process using a multiscale computational approach. Recently, Shell (Shell, M. S. J. Chem. Phys. 2008, 129, 144108-7) developed a coarse-graining methodology that is based on a thermodynamic quantity called the relative entropy, a measure of how different two molecular ensembles behave. By minimizing the relative entropy between a coarse-grained peptide system and a reference all-atom system, with respect to the coarse-grained model's force field parameters, an optimized coarse-grained model can be obtained. We have reformulated this methodology using a trajectory-reweighting and perturbation strategy that enables complex coarse-grained models with at least hundreds of parameters to be optimized efficiently. This new algorithm allows for complex peptide systems to be coarse-grained into much simpler models that nonetheless recapitulate many correct features of detailed all-atom ones. In particular, we present results for a polyalanine case study, with attention to both individual peptide folding and large-scale fibril assembly.
منابع مشابه
Coarse-grained peptide modeling using a systematic multiscale approach.
A systematic new approach to derive multiscale coarse-grained (MS-CG) models has been recently developed. The approach employs information from atomistically detailed simulations to derive CG forces and associated effective potentials. In this work, the MS-CG methodology is extended to study two peptides representing distinct structural motifs, alpha-helical polyalanine and the beta-hairpin V(5...
متن کاملProspective on multiscale simulation of virus-like particles: Application to computer-aided vaccine design.
Simulations of virus-like particles needed for computer-aided vaccine design highlight the need for new algorithms that accelerate molecular dynamics. Such simulations via conventional molecular dynamics present a practical challenge due to the millions of atoms involved and the long timescales of the phenomena of interest. These phenomena include structural transitions, self-assembly, and inte...
متن کاملCoarse-Grained Molecular Simulation of the Hierarchical Self-Assembly of π-Conjugated Optoelectronic Peptides.
Self-assembled aggregates of peptides containing aromatic groups possess optoelectronic properties that make them attractive targets for the fabrication of biocompatible electronics. Molecular-level understanding of the influence of microscopic peptide chemistry on the properties of the aggregates is vital for rational peptide design. In this study, we construct a coarse-grained model of Asp-Ph...
متن کاملA structurally relevant coarse-grained model for cholesterol.
Detailed atomistic computer simulations are now widely used to study biological membranes, including increasingly mixed lipid systems that involve, for example, cholesterol, which is a key membrane lipid. Typically, simulations of these systems start from a preassembled bilayer because the timescale on which self-assembly occurs in mixed lipid systems is beyond the practical abilities of fully ...
متن کاملMultiscale approach to investigate self-assembly of telodendrimer based nanocarriers for anticancer drug delivery.
Delivery of poorly soluble anticancer drugs can be achieved by employing polymeric drug delivery systems, capable of forming stable self-assembled nanocarriers with drug encapsulated within their hydrophobic cores. Computational investigations can aid the design of efficient drug-delivery platforms; however, simulations of nanocarrier self-assembly process are challenging due to high computatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 116 29 شماره
صفحات -
تاریخ انتشار 2012